

AN10913
DSP library for LPC1700 and LPC1300

Rev. 3 — 11 June 2010 Application note

Document information
Info Content
Keywords LPC1700, LPC1300, DSP library

Abstract This application note describes how to use the DSP library with the
LPC1700 and LPC1300 products

NXP Semiconductors AN10913
 DSP library for LPC1700 and LPC1300

 AN10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 3 — 11 June 2010 2 of 21

Contact information
For additional information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Revision history
Rev Date Description
3 20100611 Updated Section 3.

2 20100401 Added performance tables throughout.

1 20100210 Initial version.

NXP Semiconductors AN10913
 DSP library for LPC1700 and LPC1300

1. Introduction
The DSP library has been developed as a commonly used set of DSP functions
optimized for the NXP Cortex-M3 LPC1700 and LPC1300 family products. Most
functions have been implemented in Thumb-2 assembler unless there was little or no
performance benefit in doing so.

The library is supplied as a static library project with source code in LPCXpresso (Code
Red), Keil and IAR versions, and can also be linked into any ARM-EABI tool chain as a
binary library.

1.1 DSP library functions
• Biquad filter
• Fast Fourier transform
• Dot product
• Vector manipulation
• FIR filter
• Resonator
• PID controller
• Random number generator

1.2 Convention used in function names and variable names
Each variable and function is prefixed with letters giving hints to the types. Some
examples are shown below:

• vF: void Function
• iF: integer Function
• pi_x: a pointer to integer
• psi_x: a pointer to a signed integer
• si_x: a signed integer
• i_x: an integer
• pS_x: a pointer to a structure

1.3 Cortex-M3 for DSP
The Cortex-M3 has several attributes that make it deliver excellent DSP performance:

• 1-cycle 32x32 -> 32 signed multiplication
• 2-cycle (32x32)+32 -> 32 signed multiply accumulate
• Cortex-M3 is Harvard in having a separate data port to memory and instruction port

to memory

Notes:
• Any load with base register update such as LDR <rt>,[<rn>],#<imm8> takes 2-cycles

due to register bank write port conflict with the register write in the following
instruction. The few exceptions are when it is followed by instructions that do not
write results back to the register bank.

 AN10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 3 — 11 June 2010 3 of 21

NXP Semiconductors AN10913
 DSP library for LPC1700 and LPC1300

• In the library there are 16- and 32-bit variants of many algorithms. Because the
Cortex-M3 is fundamentally a 32-bit architecture, there is often little or no
performance improvement in the 16-bit implementation. Some other ARM cores have
the ‘E’ DSP extensions or the V6 SIMD extensions that effectively allow the 32-bit
registers to be used as a pair of 16-bit registers.

• One performance benefit from the 16-bit implementations could be the reduced data
memory footprint of the coefficients and data for the algorithm and also the reduced
memory system bandwidth which at the very least should save some power.

• The algorithms are all implemented using the native C types of ‘int’ and ‘short int’. A
32x32 multiply will overflow the 32-bit result if the inputs are not scaled appropriately
by the user of the library.

 AN10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 3 — 11 June 2010 4 of 21

NXP Semiconductors AN10913
 DSP library for LPC1700 and LPC1300

2. Biquad filter
The biquad is a commonly used 2nd order filter section that can be cascaded to build any
order of filter.

Biquad discrete-time function:

)2()1()2()1()()(21210 −⋅+−⋅+−⋅+−⋅+⋅= nyanyanxbnxbnxbny

The Z-domain transfer function is:

)1(
)()(2

2
1

1

2
2

1
1

−−

−−

⋅−⋅−
⋅+⋅+

=
ZaZa
ZbZbbzH o

The implementation is a Direct Form II (see Ref. [3]) which uses a shared 2-element
state vector.

2.1 Function calling details
void vF_dspl_biquad32(int *pi_Output, int *pi_Input, tS_biquad32_StateCoeff
*pS_StateCoeff, int i_NSamples);

typedef struct

{

 short int psi_Coeff[5];

 short int psi_State[2];

}tS_biquad32_StateCoeff;

psi_Coeff are ‘2.14’ format fractional values.

psi_State are ‘2.14’ format fractional values that can be zero initialized for the first call but
are updated by the routine to allow repeated calling of the filter with a stream of data.

pi_x and pi_y are ‘4.28’ format fractional values.

2.2 Biquad filter performance

Table 1. Biquad filter
Flash access 1 CPU clocks
(20 MHz max)

Flash access 2 CPU clocks
(40 MHz max)

Flash access 3 CPU clocks
(60 MHz max)

Biquad

Cycles Time (μs) Cycles Time (μs) Cycles Time (μs)
32 samples 626 31.300 631 15.775 636 10.600

Flash access 4 CPU clocks
(80 MHz max)

Flash access 5 CPU clocks
(100 MHz max)

Flash access 5 CPU clocks
(120 MHz max)[1]

Biquad

Cycles Time (μs) Cycles Time (μs) Cycles Time (μs)
32 samples 641 8.013 648 6.480 648 5.400

[1] 120 MHz only available on LPC1759 and LPC1769.

 AN10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 3 — 11 June 2010 5 of 21

NXP Semiconductors AN10913
 DSP library for LPC1700 and LPC1300

3. Fast Fourier transform
The Discrete Time Fourier Transform (DFT) is a commonly used transform in
communications, audio signal processing, speech signal processing, instrumentation
signal processing and image processing.

There are many algorithms to implement the DFT efficiently, but often the reality is that
certain algorithms suit certain machine architectures. The ARM architecture in general,
due to the register bank of 16, delivers the best FFT performance by using a Radix-4
transform and this is what has been implemented in this library.

3.1 DFT formula

∑
−

=

⋅=
1

0
)()(

N

n

kn
NWnxkX

where:

N
j

N eW
π2

−
=

3.2 DFT function prototype
void vF_dspl_fftR4b16N64(short int *psi_Y, short int *psi_x);

void vF_dspl_fftR4b16N256(short int *psi_Y, short int *psi_x);

void vF_dspl_fftR4b16N1024(short int *psi_Y, short int *psi_x);

void vF_dspl_fftR4b16N4096(short int *psi_Y, short int *psi_x);

3.3 FFT performance

Table 2. FFT performance (coefficients in flash memory)
Flash access 1 CPU clocks
(20 MHz max)

Flash access 2 CPU clocks
(40 MHz max)

Flash access 3 CPU clocks
(60 MHz max)

FFT (coefficients in
flash memory)

Cycles Time (ms) Cycles Time (ms) Cycles Time (ms)
64 points 3895 0.195 4035 0.101 4202 0.070

256 points 21107 1.055 21719 0.543 22339 0.372

1024 points 107007 5.350 110161 2.754 113326 1.889

4096 points 518926 25.946 538209 13.455 557494 9.292

Flash access 4 CPU clocks
(80 MHz max)

Flash access 5 CPU clocks
(100 MHz max)

Flash access 5 CPU clocks
(120 MHz max)[1]

FFT (coefficients in
Flash memory)

Cycles Time (ms) Cycles Time (ms) Cycles Time (ms)
64 points 4384 0.055 4616 0.046 4616 0.038

256 points 22961 0.287 23884 0.239 23884 0.199

1024 points 116749 1.459 121657 1.217 121657 1.014

4096 points 578059 7.226 600694 6.007 600694 5.006

[1] 120 MHz only available on LPC1759 and LPC1769.

 AN10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 3 — 11 June 2010 6 of 21

NXP Semiconductors AN10913
 DSP library for LPC1700 and LPC1300

4. Dot product
This function implements a 32-bit dot-product (otherwise known as the scalar product) in
assembler. The loop does one multiply per loop iteration for maximum vector length
flexibility, but could be simply unrolled further for fixed lengths of vectors.

4.1 Dot product formula

)()(
1

0
iyixxyz

N

i
⋅=⋅= ∑

−

=

4.2 Dot product function prototype
int iF_dspl_dotproduct32(int *pi_x, int *pi_y, int i_VectorLen);

4.3 Dot product performance
N = Number of cycles
N = (8 * i_VectorLen) + 8

Assumes all instruction fetches are single cycle.

 AN10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 3 — 11 June 2010 7 of 21

NXP Semiconductors AN10913
 DSP library for LPC1700 and LPC1300

5. Vector add

5.1 VectAdd16
void vF_dspl_vectadd16(int *psi_z, int *psi_x, int *psi_y, int i_VectorLen);

5.2 VectAdd32
void vF_dspl_vectadd32(int *pi_z, int *pi_x, int *pi_y, int i_VectorLen);

5.3 Vector add performance

Table 3. Vector addition
Flash access 1 CPU clocks
(20 MHz max)

Flash access 2 CPU clocks
(40 MHz max)

Flash access 3 CPU clocks
(60 MHz max)

Vector addition

Cycles Time (μs) Cycles Time (μs) Cycles Time (μs)
16 bit 340 17.000 343 8.575 346 5.767

32 bit 341 17.050 346 8.650 351 5.850

Flash access 4 CPU clocks
(80 MHz max)

Flash access 5 CPU clocks
(100 MHz max)

Flash access 5 CPU clocks
(120 MHz max) [1]

Vector addition

Cycles Time (μs) Cycles Time (μs) Cycles Time (μs)
16 bit 349 4.363 352 3.520 352 2.933

32 bit 357 4.463 363 3.630 363 3.025

[1] 120 MHz only available on LPC1759 and LPC1769.

 AN10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 3 — 11 June 2010 8 of 21

NXP Semiconductors AN10913
 DSP library for LPC1700 and LPC1300

6. Vector subtract

6.1 VectSub16
void vF_dspl_vectsub16(int *psi_z, int *psi_x, int *psi_y, int i_VectorLen);

6.2 VectSub32
void vF_dspl_vectsub32(int *pi_z, int *pi_x, int *pi_y, int i_VectorLen);

6.3 Vector Sub Performance

Table 4. Vector subtraction
Flash access 1 CPU clocks
(20 MHz max)

Flash access 2 CPU clocks
(40 MHz max)

Flash access 3 CPU clocks
(60 MHz max)

Vector subtraction

Cycles Time (μs) Cycles Time (μs) Cycles Time (μs)
16 bit 309 15.450 313 7.825 317 5.283

32 bit 341 17.050 346 8.650 351 5.850

Flash access 4 CPU clocks
(80 MHz max)

Flash access 5 CPU clocks
(100 MHz max)

Flash access 5 CPU clocks
(120 MHz max)[1]

Vector subtraction

Cycles Time (μs) Cycles Time (μs) Cycles Time (μs)
16 bit 321 4.013 326 3.260 326 2.717

32 bit 358 4.475 365 3.650 365 3.042

[1] 120 MHz only available on LPC1759 and LPC1769.

 AN10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 3 — 11 June 2010 9 of 21

NXP Semiconductors AN10913
 DSP library for LPC1700 and LPC1300

7. Vector add constant

7.1 VectAddConst16
void vF_dspl_vectaddconst16(int *psi_y, int *psi_x, int si_c, int i_VectorLen);

7.2 VectAddConst32
void vF_dspl_vectaddconst32(int *pi_y, int *pi_x, int i_c, int i_VectorLen);

7.3 Vector Add Constant Performance

Table 5. Vector add constant
Flash access 1 CPU clocks
(20 MHz max)

Flash access 2 CPU clocks
(40 MHz max)

Flash access 3 CPU clocks
(60 MHz max)

Vector add constant

Cycles Time (μs) Cycles Time (μs) Cycles Time (μs)
16 bit 274 13.700 278 6.950 282 4.700

32 bit 274 13.700 280 7.000 287 4.783

Flash access 4 CPU clocks
(80 MHz max)

Flash access 5 CPU clocks
(100 MHz max)

Flash access 5 CPU clocks
(120 MHz max) [1]

Vector add constant

Cycles Time (μs) Cycles Time (μs) Cycles Time (μs)
16 bit 287 3.588 292 2.920 292 2.433

32 bit 295 3.688 303 3.030 303 2.525

[1] 120 MHz only available on LPC1759 and LPC1769.

 AN10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 3 — 11 June 2010 10 of 21

NXP Semiconductors AN10913
 DSP library for LPC1700 and LPC1300

8. Vector element-by-element multiply

8.1 VectMulElement16
void vF_dspl_vectmulelement16(int *psi_z, int *psi_x, int *psi_y, int i_VectorLen);

8.2 VectMulElement32
void vF_dspl_vectmulelement32(int *pi_z, int *pi_x, int *pi_y, int i_VectorLen);

8.3 Vector Element-by-Element Multiply Performance

Table 6. Vector multiply
Flash access 1 CPU clocks
(20 MHz max)

Flash access 2 CPU clocks
(40 MHz max)

Flash access 3 CPU clocks
(60 MHz max)

Vector multiply

Cycles Time (μs) Cycles Time (μs) Cycles Time (μs)
16 bit 277 13.850 280 7.000 283 4.717

32 bit 309 15.450 312 7.800 315 5.250

Flash access 4 CPU clocks
(80 MHz max)

Flash access 5 CPU clocks
(100 MHz max)

Flash access 5 CPU clocks
(120 MHz max) [1]

Vector multiply

Cycles Time (μs) Cycles Time (μs) Cycles Time (μs)
16 bit 286 3.575 290 2.900 290 2.417

32 bit 320 4.000 325 3.250 325 2.708

[1] 120 MHz only available on LPC1759 and LPC1769.

 AN10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 3 — 11 June 2010 11 of 21

NXP Semiconductors AN10913
 DSP library for LPC1700 and LPC1300

9. Vector multiply by constant
Multiply each vector element by a constant.

9.1 Vector Multiply by Constant formula

cxy ⋅=

9.2 VectMulConst16 function prototype
void vF_dspl_vectmulconst16(short int *psi_y, short int *psi_x, short int si_c, int
i_VectorLen);

9.3 VectMulConst32 function prototype
void vF_dspl_vectmulconst32(int *pi_y, int *pi_x, int i_c, int i_VectorLen);

9.4 Vector Multiply by Constant Performance

Table 7. Vector multiply constant
Flash access 1 CPU clocks
(20 MHz max)

Flash access 2 CPU clocks
(40 MHz max)

Flash access 3 CPU clocks
(60 MHz max)

Vector multiply
constant

Cycles Time (μs) Cycles Time (μs) Cycles Time (μs)
16 bit 243 12.150 247 6.175 252 4.200

32 bit 274 13.700 277 6.925 280 4.667

Flash access 4 CPU clocks
(80 MHz max)

Flash access 5 CPU clocks
(100 MHz max)

Flash access 5 CPU clocks
(120 MHz max) [1]

Vector multiply
constant

Cycles Time (μs) Cycles Time (μs) Cycles Time (μs)
16 bit 257 3.213 264 2.640 264 2.200

32 bit 283 3.538 286 2.860 286 2.383

[1] 120 MHz only available on LPC1759 and LPC1769.

 AN10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 3 — 11 June 2010 12 of 21

NXP Semiconductors AN10913
 DSP library for LPC1700 and LPC1300

10. Vector sum of squares

10.1 Vector sum of squares formula

∑
−

=

=
1

0

2
N

i
ixy

10.2 VectSumSquares16 function prototype
int iF_dspl_vectsumofsquares16(short int *psi_x, int i_VectorLen);

10.3 VectSumSquares32 function prototype
int iF_dspl_vectsumofsquares32(int *pi_x, int i_VectorLen);

10.4 Vector Sum of Squares Performance

Table 8. Vector sum of squares
Flash access 1 CPU clocks
(20 MHz max)

Flash access 2 CPU clocks
(40 MHz max)

Flash access 3 CPU clocks
(60 MHz max)

Vector sum of
squares

Cycles Time (μs) Cycles Time (μs) Cycles Time (μs)
16 bit 242 12.100 244 6.100 247 4.117

32 bit 242 12.100 245 6.125 249 4.150

Flash access 4 CPU clocks
(80 MHz max)

Flash access 5 CPU clocks
(100 MHz max)

Flash access 5 CPU clocks
(120 MHz max) [1]

Vector sum of
squares

Cycles Time (μs) Cycles Time (μs) Cycles Time (μs)
16 bit 250 3.125 254 2.540 254 2.117

32 bit 254 3.175 259 2.590 259 2.158

[1] 120 MHz only available on LPC1759 and LPC1769.

 AN10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 3 — 11 June 2010 13 of 21

NXP Semiconductors AN10913
 DSP library for LPC1700 and LPC1300

11. FIR filter
Unlike DSP processors, the Cortex-M3 cannot perform load operations in parallel with
ALU operations, so each data load cycle is a cycle that cannot be used for performing
filter arithmetic. FIR filters are basically a long sequence of multiply-accumulate
operations with the output sample being produced by the accumulation of many
coefficient by input-sample multiplies.

To maximize FIR filter performance on the Cortex-M3, we utilize what is known as a
‘block-FIR’ algorithm. The algorithm reduces the number of memory accesses by
computing several output samples in each loop iteration. In this way, the input data and
the coefficients can be re-used multiple times before reading some more from memory.

11.1 FIR filter formula

∑
−

=

⋅−=
1

0
)()()(

N

i
ihinxny

11.2 FIR32 calling details
typedef struct

{

 int *pi_Coeff;

 int NTaps;

}tS_blockfir32_Coeff;

void vF_dspl_blockfir32(int *pi_y, int *pi_x, tS_blockfir32_Coeff *pS_Coeff, int
i_nsamples);

Note that the number of sample ‘i_nsamples’ must be a multiple of 4.

11.3 FIR filter performance

Table 9. FIR filter
Flash access 1 CPU clocks
(20 MHz max)

Flash access 2 CPU clocks
(40 MHz max)

Flash access 3 CPU clocks
(60 MHz max)

Cycles Time (μs) Cycles Time (μs) Cycles Time (μs)
32 samples and taps 3433 171.650 3445 86.125 3470 57.833

Flash access 4 CPU clocks
(80 MHz max)

Flash access 5 CPU clocks
(100 MHz max)

Flash access 5 CPU clocks
(120 MHz max) [1]

Cycles Time (μs) Cycles Time (μs) Cycles Time (μs)
32 samples and taps 3495 43.688 3520 35.200 3520 29.333

[1] 120 MHz only available on LPC1759 and LPC1769.

 AN10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 3 — 11 June 2010 14 of 21

NXP Semiconductors AN10913
 DSP library for LPC1700 and LPC1300

12. Resonator (oscillator)
The resonator function is used to very efficiently generate sinusoidal signal – i.e., no look
up table or use of trigonometric approximations. Note that this algorithm is just a special
case of the biquad filter section but with the numerator coefficients equal to zero and the
two poles on the unit-circle so that it oscillates.

12.1 Resonator formula
12.1.1 Discrete time representation

)2()1()(21 −⋅+−⋅= nyanyany

12.1.2 Z-domain representation

)1(
1)(2

2
1

1
−− ⋅−⋅−

=
ZaZa

zH

12.2 Resonator calling details
typedef struct

{

 int i_Coeff_a1;

 int i_yn_1;

 int i_yn_2;

}tS_ResonatorStateCoeff;

void vF_dspl_resonator(int *psi_Output, void *pS_ResonatorStateCoeff, int i_NSamples);

Since the resonator is a recursive algorithm, care needs to be taken with the parameter
scaling that is used. The coefficients and state of the resonator needs setting up as
follows:

i_Coeff_a1 = 2.0 * cos(Omega) * pow(2.0,14)

To start the oscillation, the initial state should be set as follows:
i_yn_1 = 0;

i_yn_2 = -Amplitude * sin(Omega) * pow(2.0,14)

where:
Omega = frequency as a fraction of the sample rate
Amplitude = required amplitude of the wave – must be <2.0 due to the ‘2.14’
arithmetic

A numerical format of ‘2.14’ has been used because the a1 coefficient is larger than 1
and the single cycle multiply of the CM3 can only be guaranteed not to overflow if the
multiplier and multiplicand inputs to the multiplier are 16-bits.

 AN10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 3 — 11 June 2010 15 of 21

NXP Semiconductors AN10913
 DSP library for LPC1700 and LPC1300

12.3 Resonator performance

Table 10. Resonator
Flash access 1 CPU clocks
(20 MHz max)

Flash access 2 CPU clocks
(40 MHz max)

Flash access 3 CPU clocks
(60 MHz max)

Resonator

Cycles Time (μs) Cycles Time (μs) Cycles Time (μs)
512 samples 5153 257.650 5157 128.925 5161 86.017

Flash access 4 CPU clocks
(80 MHz max)

Flash access 5 CPU clocks
(100 MHz max)

Flash access 5 CPU clocks
(120 MHz max) [1]

Resonator

Cycles Time (μs) Cycles Time (μs) Cycles Time (μs)
512 samples 5166 64.575 5172 51.720 5172 43.100

[1] 120 MHz only available on LPC1759 and LPC1769.

 AN10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 3 — 11 June 2010 16 of 21

NXP Semiconductors AN10913
 DSP library for LPC1700 and LPC1300

13. PID controller
The ‘Proportional, Integral, Differential’ is a commonly used feedback control algorithm
with very modest CPU usage.

13.1 PID controller discrete time formula

))1()(()()()(
0

−−⋅+⋅+⋅= ∑
=

neneKkeKneKnu d

n

k
ip

13.2 PID controller function calling details
typedef struct

{

 short int Kp;

 short int Ki;

 short int Kd;

 short int IntegratedError;

 short int LastError;

}tS_pid_Coeff;

short int vF_dspl_pid(short int si_Error, tS_pid_Coeff *pS_Coeff);

13.3 PID controller performance

Table 11. PID controller
Flash access 1 CPU clocks
(20 MHz max)

Flash access 2 CPU clocks
(40 MHz max)

Flash access 3 CPU clocks
(60 MHz max)

Cycles Time (μs) Cycles Time (μs) Cycles Time (μs)
PID 47 2.350 49 1.225 52 0.867

Flash access 4 CPU clocks
(80 MHz max)

Flash access 5 CPU clocks
(100 MHz max)

Flash access 5 CPU clocks
(120 MHz max)[1]

Cycles Time (μs) Cycles Time (μs) Cycles Time (μs)
PID 56 0.700 60 0.600 60 0.500

[1] 120 MHz only available on LPC1759 and LPC1769.

 AN10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 3 — 11 June 2010 17 of 21

NXP Semiconductors AN10913
 DSP library for LPC1700 and LPC1300

14. Random number generator
The library implements an assembler version of a Linear Congruential random sequence
generator best described in Ref. [1].

Note that if you only want less bits than the 32-bits returned by this function it is better to
choose the upper bits of the word returned as these are ‘more random’ than the lower
bits.

14.1 Random number formula
mcXaY nn mod)(+⋅=

Where:
Yn is the new number in the output sequence
Xn is a seed value (or the previous value in a sequence)
c is a well chosen constant – see Ref. [1]
a is a well chosen multiplier constant – Ref. [1]
m is a carefully chosen modulus for the arithmetic – Ref. [1]

In our implementation m=2^32 so that we simply use the native arithmetic.
c = 32767
a = 16644525

14.2 Random number function prototype
int iF_RandomNumber(int i_Seed);

Note: To produce a sequence of random numbers, use the previous result as the seed
for the next call.

14.3 Random number performance

Table 12. Random number generator
Flash access 1 CPU clocks
(20 MHz max)

Flash access 2 CPU clocks
(40 MHz max)

Flash access 3 CPU clocks
(60 MHz max)

Cycles Time (μs) Cycles Time (μs) Cycles Time (μs)
Random number 23 1.150 26 0.650 30 0.500

Flash access 4 CPU clocks
(80 MHz max)

Flash access 5 CPU clocks
(100 MHz max)

Flash access 5 CPU clocks
(120 MHz max)[1]

Cycles Time (μs) Cycles Time (μs) Cycles Time (μs)
Random number 34 0.425 38 0.380 38 0.317

[1] 120 MHz only available on LPC1759 and LPC1769.

 AN10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 3 — 11 June 2010 18 of 21

NXP Semiconductors AN10913
 DSP library for LPC1700 and LPC1300

AN10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 3 — 11 June 2010 19 of 21

15. References
[1] Knuth, The Art of Computer Programming Vol. 2, Semi-numerical Algorithms,

Chapter 3 – Random Numbers

[2] Rabiner and Gold, Theory & Application of Digital Signal Processing

[3] Proakis and Manolakis, Digital Signal Processing, Principles, Algorithms, and
Applications

NXP Semiconductors AN10913
 DSP library for LPC1700 and LPC1300

 AN10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 3 — 11 June 2010 20 of 21

16. Legal information

16.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

16.2 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental

damage. NXP Semiconductors accepts no liability for inclusion and/or use of
NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from national authorities.

16.3 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

NXP Semiconductors AN10913
 DSP library for LPC1700 and LPC1300

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2010. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an please send an email to:
salesaddresses@nxp.com

Date of release: 11 June 2010
Document identifier: AN10913

17. Contents

1. Introduction ...3
1.1 DSP library functions..3
1.2 Convention used in function names and variable

names ..3
1.3 Cortex-M3 for DSP...3
2. Biquad filter ...5
2.1 Function calling details5
2.2 Biquad filter performance5
3. Fast Fourier transform..6
3.1 DFT formula ...6
3.2 DFT function prototype.......................................6
3.3 FFT performance ...6
4. Dot product ..7
4.1 Dot product formula..7
4.2 Dot product function prototype7
4.3 Dot product performance....................................7
5. Vector add..8
5.1 VectAdd16..8
5.2 VectAdd32..8
5.3 Vector add performance.....................................8
6. Vector subtract ..9
6.1 VectSub16..9
6.2 VectSub32..9
6.3 Vector Sub Performance....................................9
7. Vector add constant..10
7.1 VectAddConst16 ..10
7.2 VectAddConst32 ..10
7.3 Vector Add Constant Performance...................10
8. Vector element-by-element multiply................11
8.1 VectMulElement16 ...11
8.2 VectMulElement32 ...11
8.3 Vector Element-by-Element Multiply

Performance...11
9. Vector multiply by constant12
9.1 Vector Multiply by Constant formula.................12
9.2 VectMulConst16 function prototype12
9.3 VectMulConst32 function prototype12
9.4 Vector Multiply by Constant Performance12
10. Vector sum of squares......................................13
10.1 Vector sum of squares formula13
10.2 VectSumSquares16 function prototype............13
10.3 VectSumSquares32 function prototype............13
10.4 Vector Sum of Squares Performance...............13
11. FIR filter..14

11.1 FIR filter formula...14
11.2 FIR32 calling details ...14
11.3 FIR filter performance.......................................14
12. Resonator (oscillator)15
12.1 Resonator formula..15
12.1.1 Discrete time representation.............................15
12.1.2 Z-domain representation15
12.2 Resonator calling details15
12.3 Resonator performance....................................16
13. PID controller ...17
13.1 PID controller discrete time formula17
13.2 PID controller function calling details................17
13.3 PID controller performance...............................17
14. Random number generator...............................18
14.1 Random number formula..................................18
14.2 Random number function prototype18
14.3 Random number performance..........................18
15. References ...19
16. Legal information ..20
16.1 Definitions...20
16.2 Disclaimers...20
16.3 Trademarks ..20
17. Contents...21

	1. Introduction
	1.1 DSP library functions
	1.2 Convention used in function names and variable names
	1.3 Cortex-M3 for DSP

	2. Biquad filter
	2.1 Function calling details
	2.2 Biquad filter performance

	3. Fast Fourier transform
	3.1 DFT formula
	3.2 DFT function prototype
	3.3 FFT performance

	4. Dot product
	4.1 Dot product formula
	4.2 Dot product function prototype
	4.3 Dot product performance

	5. Vector add
	5.1 VectAdd16
	5.2 VectAdd32
	5.3 Vector add performance

	6. Vector subtract
	6.1 VectSub16
	6.2 VectSub32
	6.3 Vector Sub Performance

	7. Vector add constant
	7.1 VectAddConst16
	7.2 VectAddConst32
	7.3 Vector Add Constant Performance

	8. Vector element-by-element multiply
	8.1 VectMulElement16
	8.2 VectMulElement32
	8.3 Vector Element-by-Element Multiply Performance

	9. Vector multiply by constant
	9.1 Vector Multiply by Constant formula
	9.2 VectMulConst16 function prototype
	9.3 VectMulConst32 function prototype
	9.4 Vector Multiply by Constant Performance

	10. Vector sum of squares
	10.1 Vector sum of squares formula
	10.2 VectSumSquares16 function prototype
	10.3 VectSumSquares32 function prototype
	10.4 Vector Sum of Squares Performance

	11. FIR filter
	11.1 FIR filter formula
	11.2 FIR32 calling details
	11.3 FIR filter performance

	12. Resonator (oscillator)
	12.1 Resonator formula
	12.1.1 Discrete time representation
	12.1.2 Z-domain representation

	12.2 Resonator calling details
	12.3 Resonator performance

	13. PID controller
	13.1 PID controller discrete time formula
	13.2 PID controller function calling details
	13.3 PID controller performance

	14. Random number generator
	14.1 Random number formula
	14.2 Random number function prototype
	14.3 Random number performance

	15. References
	16. Legal information
	16.1 Definitions
	16.2 Disclaimers
	16.3 Trademarks

	17. Contents

